Matrix Determinant Calculator

Created by Luis Hoyos
Last updated: Feb 18, 2023

If you want to calculate matrix determinants, you're in the right place. This determinant solver calculates the determinant of 4x4, 3x3, and 2x2 matrices.

But what is the importance of determinants? Determinants have many applications, which we'll mention in the following section. For example, solving a 3x3 system of equations is the same as calculating the determinant of a 3x3 matrix. Keep reading to learn more about it!

Why do we need to calculate matrix determinants?

These are some of the applications of determinants:

  • For instance, we can describe systems of linear equations using matrices. The use of Cramer's rule is an example in which we use determinants to solve systems of linear equations.
  • When using matrices to describe a linear transformation, it's often better to diagonalize them. We do that by calculating matrix determinants, of course.
  • The determinant tells us whether the matrix has an inverse and whether we can approximate that inverse with the Moore-Penrose pseudoinverse.
  • We usually need the eigenvalues of the previously mentioned transformation. To obtain them, we also need to calculate matrix determinants.

And why do we need matrices? Well, matrices describe many physical quantities, such as stress, strain, turbulence, or the Mohr's circle.

Well, determinants are important, that's clear. Now, let's see how to calculate them.

Calculating the determinant of 4x4, 3x3, and 2x2 matrices

The following are the formulas to calculate matrix determinants.

Determinant of a 2x2 matrix

If

A=[a1b1a2b2]\scriptsize A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}

then the determinant of AA is

A=a1b2a2b1\footnotesize |A| = a_1b_2 - a_2b_1

Determinant of a 3x3 matrix

If

B=[a1b1c1a2b2c2a3b3c3]\scriptsize B = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}

then, to calculate the determinant of such a 3x3 matrix:

B=a1b2c3+a2b3c1+a3b1c2         a3b2c1a1b3c2a2b1c3\scriptsize |B| = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 \\\ \ \ \ \ \ \ \ \ - a_3b_2c_1 - a_1b_3c_2 - a_2b_1c_3

Determinant of a 4x4 matrix

Finally:

C=[a1b1c1d1a2b2c2d2a3b3c3d3a4b4c4d4]\scriptsize C = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{bmatrix}

then, to calculate the determinant of such a 4x4 matrix:

C=a1b2c3d4a2b1c3d4+a3b1c2d4 a1b3c2d4+a2b3c1d4a3b2c1d4+a3b2c4d1 a2b3c4d1+a4b3c2d1a3b4c2d1+a2b4c3d1 a4b2c3d1+a4b1c3d2a1b4c3d2+a3b4c1d2 a4b3c1d2+a1b3c4d2a3b1c4d2+a2b1c4d3 a1b2c4d3+a4b2c1d3a2b4c1d3+a1b4c2d3 a4b1c2d3\scriptsize |C| = a_1b_2c_3d_4 - a_2b_1c_3d_4 + a_3b_1c_2d_4 - \\\ a_1b_3c_2d_4 + a_2b_3c_1d_4 - a_3b_2c_1d_4 + a_3b_2c_4d_1 - \\\ a_2b_3c_4d_1 + a_4b_3c_2d_1 - a_3b_4c_2d_1 + a_2b_4c_3d_1 - \\\ a_4b_2c_3d_1 + a_4b_1c_3d_2 - a_1b_4c_3d_2 + a_3b_4c_1d_2 - \\\ a_4b_3c_1d_2 + a_1b_3c_4d_2 - a_3b_1c_4d_2 + a_2b_1c_4d_3 - \\\ a_1b_2c_4d_3 + a_4b_2c_1d_3 - a_2b_4c_1d_3 + a_1b_4c_2d_3 - \\\ a_4b_1c_2d_3

As you can see, finding the determinant of a 3x3 and a 2x2 matrix is relatively easy, but calculating the determinant of a 4x4 matrix is an uphill task. The best option is, undoubtedly, using our determinant solver.

After that, you should visit our other math tools! The vector addition calculator is convenient if you need to deal with vectors.

Luis Hoyos
Matrix size
2x2
A=
a₁b₁
a₂b₂
First row
a₁
b₁
Second row
a₂
b₂
Result
Determinant |A|
People also viewed…

Kite area

With the kite area calculator, you can find the area and perimeter of a kite. This tool will instantly give you the results by simply entering the known dimensions.

Polar coordinates

Find out how to convert between the two most important coordinate systems in two dimensions with our polar coordinates calculator!

Schwarzschild radius

Discover the fundamental of black hole physics with our Schwarzschild radius calculator.
main background