Half-Life Calculator

Created by Davide Borchia
Last updated: Jul 04, 2022

Whether you are considering radioactive atoms or a population of bacteria, the underlying mathematics is the same: our half-life calculator will teach you how to compute the most important quantity of the decay process, the half-life.

Here you will learn:

  • What is the half-life in exponential decays;
  • How to calculate the exponential decay using the half-life;
  • How to calculate the half-life;
  • Examples of half-life in physics and biology.

Decay processes

A decay process is any process that sees a decrease in the measured quantity. Decay processes are usually divided into two categories:

  • Exponential decays; and
  • Non-exponential decays, where we can identify subtypes like:
    • Inverse square decay; or
    • Zipf's law decay

What is the half-life?

In any decay process, we can pinpoint a moment in which the quantity is half the original amount. We call the time elapsed from the starting moment to this point the half-life of the quantity.

We can define the half-life also in terms of probability. This approach best suits discrete quantities or unitary ones. In this case, the half-life is the time after which there is a 50%50\% chance of decay.

In physics, the half-life usually describes stochastic processes as radioactive decay, where an unstable atom emits or absorbs a particle to change species. This process is entirely random, and an atom can go eons without decaying. On the contrary, in biology, a bacteria in a decaying population will die after a given time: no immortal bacteria out there.

How do I calculate the half-life?

Let's learn how to calculate the half-life of an exponential decay (a mathematical model based on the exponential growth).

We define first the law of exponential decay:

N(t)=N(0)etτN(t) = N(0)\cdot e^{-\frac{t}{\tau}}


  • N(t)N(t) is the quantity at the time tt;
  • N(0)N(0) is the quantity at the initial reference time;
  • tt is the elapsed time; and
  • τ\tau is the average lifetime of each component of the measured quantity.

🔎 τ\tau, the average lifetime, is often expressed as its inverse, the decay constant λ\lambda: λ=1/τ\lambda = 1/\tau.

To find the half-life we can rearrange this expression, knowing that, when the half-life time is reached:

N(t)=0.5N(0)N(t)=0.5\cdot N(0)

We can define the half-life time t0.5t_{0.5} as:

0.5N(0)=N(0)et0.5τ0.5\cdot N(0) = N(0)\cdot e^{-\frac{t_{0.5}}{\tau}}

Which can be easily rewritten to isolate t0.5t_{0.5} using the natural logarithm:

t0.5=ln(2)τt_{0.5} = \ln{(2)}\cdot \tau

Using this relation, we can write the half-life equation using the factor 0.50.5 characteristic for the halving of the quantity:

N(t)=N(0)12tt0.5N(t)= N(0)\cdot\frac{1}{2}^{\frac{t}{t_{0.5}}}

Our half-life calculator works in both directions: you can calculate the half-life of a decay process if you know the initial and final quantities, and the elapsed time, or you can calculate the final (or initial) quantities if you know the half-life.

Examples of how to calculate the half-life

We will calculate the half-life in two situations: radioactive decay and the decline of a bacterial population.

Take a radioactive atom, let's say promethium (were you expecting uranium?). Promethium is the lightest natural radioactive element. Its most common (and stable) isotope, 145Pm^{145}\text{Pm}, has half-life t0.5=17.7 yt_{0.5}=17.7\ \text{y}. Scientists estimate that on Earth, there are about 500 g500\ \text{g} of promethium at a given time. Assuming that no more atoms of this element would form, how much promethium would we have after 100 y100\ \text{y}? Input the known data in the half-life equation:

N(100 y ⁣) ⁣= ⁣500 g12100 y17.7 y ⁣= ⁣9.96 gN(100\ \text{y}\!)\! = \!500\ \text{g}\cdot\frac{1}{2}^{\frac{100\ \text{y}}{17.7\ \text{y}}}\!=\!9.96\ \text{g}

Let's try the other way around. What's the half-life of a bacteria population that starts with 10510^5 individuals, and after a day ends with 51035\cdot 10^3 individuals. Input the data in our half-time calculator:

t0.5=ln(2)tln(N(0)N(t))= ⁣ln(2)1440 minln(1065103) ⁣ ⁣52 min\begin{align*} t_{0.5}& = \frac{\ln{(2)}\cdot t}{\ln{\left(\frac{N(0)}{N(t)}\right)}}\\ \\ & =\! \frac{\ln{(2)}\cdot 1440\ \text{min}}{\ln{\left(\frac{10^6}{5\cdot 10^3}\right)}}\!\simeq\!52\ \text{min}\\ \end{align*}
Davide Borchia
Formula for half-life, given the decay constant and the mean lifetime
Initial quantity (N(0))
Half-life time (T)
Total time
Remaining quantity (N(t))
Decay constant (λ)
per s
Mean lifetime (τ)
People also viewed…

Boyle's law

CalcTool Boyle's law calculator calculates the pressure or volume in a constant temperature process.

Charles' law

The Charles' law calculator finds the a gases temperature and volume in an isobaric process.
main background